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Abstract 27 

This study addresses the prevalent issue of meat species authentication and adulteration 28 

through a chemometrics-based approach, crucial for upholding public health and ensuring a 29 

fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-30 

phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). 31 

Adulterated meat samples were effectively identified through principal component analysis 32 

(PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance 33 

in projection (VIP) scores and a Random Forest test, 11 key compounds, including nonanal, 34 

octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, 35 

and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified 36 

as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on 37 

adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly 38 

influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with 39 

the first two components capturing 80% and 72.1% of total variance, respectively. This 40 

technique could be a reliable method for detecting meat adulteration in cooked meat. 41 
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1. Introduction 44 

Meat and its derivatives play a crucial role as a significant protein source and are 45 

indispensable components of the human diet (Li et al., 2022). However, sometimes they have 46 

been adulterated deliberately or accidentally with more than one species or undeclared 47 

admixture (Ruiz Orduna et al., 2017). Adulterating beef with pork is a common fraudulent 48 

practice driven by economic motives, as pork is generally cheaper than beef (Mannaa, 2020; 49 

Yang et al., 2018). While this adulteration may not pose significant health risks, it can result in 50 

economic losses and potentially endanger consumers with allergies to particular food items 51 

(Ghovvati et al., 2009; Nurjuliana et al., 2011). Moreover, it has some ethical and religious 52 

issues, as pork is strictly prohibited to Muslims (Nakyinsige et al., 2012). Hence, it is necessary 53 

to authenticate meat species and detect this type of adulteration. 54 

To mitigate the risk of adulteration, clear guidelines for authenticating meat must be 55 

established by regulatory bodies with governing authority (Ruiz Orduna et al., 2017). 56 

Furthermore, there is a need for sensitive and selective methodologies to identify and detect 57 

such forms of adulteration. Numerous techniques employed previously have demonstrated high 58 

effectiveness in detecting minute levels of adulteration. (Pavlidis et al., 2019). These 59 

techniques include immunological and enzymatic techniques, DNA-based assay, various 60 

spectrometry and chromatography-based methods, NMR-based techniques, and electronic nose 61 

(Jakes et al., 2015; Lo and Shaw, 2018; Mandli et al., 2018; Nurjuliana et al., 2011; Pranata et 62 

al., 2021). Nevertheless, nowadays, detecting meat adulteration in cooked meat using 63 

headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-64 

GC-MS) has gained popularity based on the volatile compounds as they are formed after 65 

cooking and gives specific flavour characteristics of meat (Amalia et al., 2022; Pranata et al., 66 

2021). The volatile compounds are generated during cooking via an intricate sequence of 67 

chemical reactions, encompassing the Maillard reaction, lipid degradation, Strecker 68 

degradation, and interactions between intermediate reaction products and degradation 69 

byproducts (Aaslyng and Meinert, 2017). Volatilomics is regarded as a promising tool that can 70 

be utilized for detecting food fraud, evaluating quality, and verifying authenticity. 71 

Gas chromatography-mass spectrometry (GC-MS) is highly efficient in identifying 72 

unknown compounds present in any given sample. Different techniques are used for extracting 73 

volatile compounds including dynamic headspace extraction on Tenax TA, simultaneous steam 74 

distillation-solvent extraction (SDE), solvent-assisted flavor evaporation (SAFE), and HS-75 



 

 

SPME (Madruga et al., 2009). In this study, HS-SPME was selected due to its well-documented 76 

efficacy in extracting volatile compounds from meat. It offers notable advantages including 77 

simplicity, solvent-free operation, reusability, and swift extraction time, as supported by 78 

previous studies (Li et al., 2022; Pavlidies et al., 2019; Pranata et al., 2021). Gas 79 

chromatography coupled with mass spectrometry emerged as an apt method for the 80 

identification and quantification of volatile compounds within meat, as evidenced by the work 81 

of Amalia et al. (2022). SPME-GC-MS is frequently reported as a powerful technique to 82 

differentiate between meat species and detect meat adulteration with multivariate analysis or 83 

machine learning techniques (Dahimi et al., 2014; Pavlidis et al., 2019; Pranata et al., 2021). 84 

The study's objective reported here was to detect adulteration in cooked meat and detection 85 

of pork in mixed beef and pork meat. With the volatile data obtained from GC-MS, a 86 

multivariate statistical model was developed for the authenticity of meat species and the 87 

identification of discriminating volatile compounds for each type of meat. 88 

 89 

 90 

2. Materials and methods 91 

2.1. Sampling 92 

Ten Hanwoo cattle with a market weight ranging from 425 to 455 kilograms were 93 

randomly chosen from a slaughter plant located in Jinju-Si, Gyeongsangnam-do, Republic of 94 

Korea. The fresh beef round was dissected from each carcass 48 h postmortem. A total of 10 95 

pigs (castrated boar; Landrace♂ × Yorkshire♀ × Duroc♂, market weight 69~74 kg) were 96 

randomly selected at a slaughter plant. Fresh pork round was dissected each carcass 48 h 97 

postmortem. Upon arrival at the laboratory, all subcutaneous and intermuscular fat, along with 98 

any visible connective tissue, were promptly removed from the fresh muscles. The muscles 99 

were subsequently sliced into small segments and thoroughly pulverized to create a uniform 100 

paste using a grinder. A total of four different groups of samples were made, two of them were 101 

pure (only beef & only pork) and two were adulterated. The adulterated mixed samples were 102 

prepared in two different ratios (80% beef and 20% pork; 60% beef and 40% pork). Next, 100 103 

grams were measured from each group for cooking purposes. The study utilized a total of 20 104 

distinct animals, resulting in the analysis of 40 samples, with each sample having three 105 

replicates. 106 

 107 



 

 

2.2. Method of cooking 108 

        The ground meat samples were cooked by pan-roasting on an electric hot plate set to 109 

temperatures over 150˚C for 5 minutes. Before cooking, the surface temperature of the hot plate 110 

was calibrated using a laser infrared thermometer. The ground meat was consistently stirred 111 

and blended using a steel spatula throughout the cooking process. The temperature was 112 

consistently maintained between 150 and 170 degrees Celsius, with continuous monitoring 113 

facilitated by a laser infrared thermometer (Bluebird, Model: BO-350). Following the cooking 114 

process, the sample was allowed to cool to room temperature before being vacuum-sealed and 115 

stored in a freezer at -80˚C until analysis. 116 

 117 

2.3. Analysis of the volatile compounds 118 

2.3.1. HS-SPME 119 

The sample preparation followed a method with slight modification (Ahamed et al., 2023). 120 

Each cooked sample, precisely 2.5 grams, was combined with 5 mL of a 25% NaCl solution. 121 

This mixture underwent thorough homogenization for one minute using a homogenizer. 122 

Subsequently, the prepared samples were transferred into 20 mL glass vials (Supelco). An 123 

internal standard of 1 µl of 0.4 mg/mL 2-methyl-3-heptanone dissolved in hexane was added. 124 

The vials were tightly sealed using mininert valves. For extraction of volatile compounds, the 125 

DVB/CAR/PDMS- 50/30 µm (PAL Smart SPME Fiber) fiber was utilized. The vial containing 126 

the sample was initially heated for 15 minutes at 60˚C as an incubation period. Following this, 127 

the SPME fiber was exposed to the headspace of the vial for an additional 30 minutes under 128 

the same temperature conditions with continuous shaking. Upon completion of the absorption 129 

process, the SPME fiber was desorbed in the injection port of the GC-MS instrument for 6 130 

minutes. Prior to usage, the fiber was conditioned at 270˚C for 30 minutes. Additionally, before 131 

each analysis, the fiber underwent exposure to the injection port of the GC for another 10 132 

minutes to clean it. 133 

 134 

2.3.2. Operating conditions of the GC-MS 135 

GC/MS analyses were performed utilizing an Agilent 7890B gas chromatograph coupled 136 

with an Agilent 5973C quadrupole mass spectrometer (Agilent Technologies, Santa Clara, 137 

California, USA). An autosampler (PAL, Agilent) was also employed in the analysis process. 138 

Helium (99.99%) was employed as the carrier gas, maintaining a steady flow at a rate of 1 139 

mL/min. The injection port was fitted with a liner (0.75 mm i.d, Agilent) specifically designed 140 



 

 

for SPME analysis, and maintained at a temperature of 250˚C. An HP-INNOWax capillary 141 

column (60 m × 0.32 mm, 0.25 µm film thickness, Agilent) was utilized for compound 142 

separation. Initially, the oven temperature was set at 40˚C and held for 3 minutes. Subsequently, 143 

there was a gradual temperature increase at a rate of 4˚C/min up to 120˚C, followed by another 144 

increase at a rate of 8˚C/min up to 220˚C. A rapid increase to 250˚C was then applied at a rate 145 

of 20˚C/min and maintained for 5 minutes. The interface temperature was set to 280˚C. The 146 

mass spectrometer operated in electron ionization mode, with the electron energy set to 70 147 

electron volts (eV) and a scanning range spanning 50 to 450 mass-to-charge ratio (m/z). The 148 

ion source and quadrupole temperatures were established at 230˚C and 150˚C, respectively. 149 

During injection, a pulsed splitless mode was employed throughout the experiment. 150 

 151 

2.3.3. Pretreatment and identification of the volatile compounds  152 

All volatile compounds were identified by comparing their mass spectra with the built-in 153 

NIST v.14 mass spectral library (NIST/EPA/NIH Mass Spectral Library with Search Program), 154 

with a minimum mass match quality of 80% considered for each compound. Additionally, 155 

compounds were verified using the linear retention index (LRI) from the PubChem library and 156 

NIST Chemistry Webbook. To ensure the reliability of retention times and tentative 157 

identifications, authentic samples of several detected compounds were analyzed. The LRI was 158 

determined using a homologous series of even-numbered n-alkanes ranging from C6 to C40 159 

(Polyscience, Illinois, USA), under identical chromatographic conditions as those applied to 160 

the samples. The calculation of LRI was performed using an equation described in a prior study 161 

(Pranata et al., 2021). 162 

Before further processing, a data pre-treatment step was performed to convert raw data 163 

into a cleaner format. This process involved employing Chemostation software to automate 164 

tasks such as peak alignment, annotation, and integration of the target ion peak area. 165 

 166 

2.3.4. Relative quantification of the volatile compounds 167 

The relative concentration of each compound was assessed by calculating the peak areas. 168 

The concentration was computed following the method outlined in Ahamed et al. (2023), with 169 

slight adjustments, employing the subsequent formula and denoted as micrograms per kilogram 170 

(µg/kg). 171 

Relative concentrations = {( 
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜 (

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑒

𝐼𝑆
 )× 𝑐𝑜𝑛𝑐.𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

2.5 𝑔 (𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡)
)} × 1000 172 



 

 

 173 

2.3.5. Statistical analysis and data pretreatment 174 

All data analyses were carried out using SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). 175 

For multivariate data analysis, Metaboanalyst 5.0 (www.metaboanalyst.ca), was utilized. The 176 

data was first converted into a CSV file, followed by log transformation and Pareto-scaling for 177 

normalization. Peaks with more than 50% missing values were excluded from the analysis. 178 

PCA and PLS-DA models were employed as unsupervised and supervised methods, 179 

respectively, to distinguish between meat types based on the relative concentration of each 180 

compound. Additionally, a Random Forest test was conducted to identify the model's most 181 

significant compounds and assess its predictive capability. Cross-validation and response 182 

permutation tests were utilized to evaluate and validate the models. Data was presented as mean 183 

± standard error (SE), and statistical significance was determined at P < 0.05 using Duncan’s 184 

multiple range test. 185 

 186 

3. Results and discussion 187 

3.1. Volatile compounds identification 188 

Forty-five volatile compounds were identified from the meat samples, and they were 189 

categorized into different chemical groups, namely aldehydes (16), alcohols (8), pyrazines (6), 190 

acids (5), hydrocarbons (8) and miscellaneous (2), of which aldehydes were the most abundant 191 

in all samples. All of these volatile flavour compounds formed from the precursor of meat, 192 

namely, free amino acids, peptides, free sugars, vitamins, sugar phosphate, and low molecular 193 

weight water-soluble compounds (Koutsidis et al., 2008). Previous studies on cooked meat 194 

volatiles found a similar result that aldehydes and alcohols were the most abundant compounds 195 

(Beldarrain et al., 2022; Wei et al., 2022). Six to ten carbon-containing aldehydes were the 196 

most common and present in higher quantities (Moran et al., 2022). Table 1 shows the 197 

qualitative and quantitative analysis results of the volatile compounds. The aldehydes, alcohols, 198 

and some acids are the most abundant flavour families in cooked meat (Shi et al., 2019; Vilar 199 

et al., 2022). Many of the volatile compounds identified have been previously discussed in a 200 

review by Sohail et al. (2022) or validated in recent studies conducted by Amalia et al. (2022) 201 

and Pranata et al. (2021). The majority of these compounds are derived from processes such as 202 

the Maillard reaction, lipid degradation, and the interaction between compounds produced 203 

during these reactions, all of which occur during cooking (Pranata et al., 2021). Alcohols, 204 



 

 

primarily originating from lipid degradation, such as 1-octen-3-ol, 2-ethyl-1-hexanol, and 1-205 

octanol, are prominent among the compounds identified in cooked beef and pork (Bueno et al., 206 

2019). 207 

This 1-octen-3-ol was found as a key compound responsible for pork flavour and found at 208 

a very high concentration in previous studies (Pavlidis et al., 2019; Pranta et al., 2021; Wu et 209 

al., 2022). In our study, among all the alcohols found in pork, 1-octen-3-ol was present at a 210 

higher concentration. Other alcohols include 1-heptanol, 2-octen-1-ol (E), 1-dodecanol, 2-211 

phenyl-2-propanol, and 4-methyl phenol. Among these compounds, 2-phenyl-2-propanol was 212 

not found in previous studies. However, the possible reason for the occurrence of this 213 

compound is from the amino acid breakdown, particularly from phenylalanine, during meat 214 

cooking at high temperatures (Scognamiglio et al., 2012). Hexanal, octanal, and nonanal were 215 

the most common and elevated compounds found in all the samples (Beldarrain et al., 2022). 216 

The major aldehydes and alcohols were mainly derived from the auto-oxidation or degradation 217 

of unsaturated fatty acids, for instance, linolenic, linoleic, and oleic acids which are very 218 

abundant in beef and pork (Al-Dalali et al., 2022). The pyrazines are responsible for the roast 219 

flavour of the meat, and methyl group pyrazines are most common in cooked meat (Sohail et 220 

al., 2022). They are formed by the Maillard browning reaction. The 3-ethyl-2,5-dimethyl 221 

pyrazine is the most frequently occurring in cooked meat and strongly influences roast flavour 222 

(Sohail et al., 2022). This study identified five short-chain fatty acids: hexanoic acid, heptanoic 223 

acid, octanoic acid, nonanoic acid, and decanoic acid. This fatty acid strongly impacts the 224 

flavour and aroma of cooked meat and may come from the diet or microbial fermentation in 225 

the digestive system (Li et al., 2021a). These fatty acids were reported in a previous study 226 

(Zhao et al., 2017). Eight individual hydrocarbons were identified, which poorly contribute to 227 

the cooked meat flavour (Wu et al., 2022). Hydrocarbons are mainly derived from pasture-228 

based diets and decarboxylation of higher fatty acids (Beldarrain et al., 2022). Among the 229 

hydrocarbons, 2-pentyl furan was a significant hydrocarbon and played an important role in 230 

overall pork flavour (Wang et al., 2016). The compound 1-Formylpyrrolidine was not reported 231 

in any other previous research and may form from the reaction of lysine and arginine with 232 

reducing sugars like glucose and fructose during meat cooking (Li et al., 2023). Overall, the 233 

volatile compounds in cooked meat are mainly derived from amino and fatty acid metabolism. 234 

Many compounds were found to differ significantly in their abundance between beef and pork 235 

and some compounds did not have significant differences between beef and mixed group but 236 

were significantly different with pork. As in the mixed sample, the beef percentage was higher, 237 



 

 

which may be the possible reason for this. One study with raw meat also reaches a similar kind 238 

of conclusion (Pavlidis et al., 2019). In the PCA  score plot, the mixed samples were clustered 239 

very close to the pure beef samples. For instance, some aldehydes like, heptanal, octanal, and 240 

nonanal do not have significant differences between the three meat groups other than pork. 241 

Some compounds were not found in more than fifty percent of the samples analyzed and were 242 

considered as not detected. Overall, mostly aldehydes, alcohols, and acids make the differences 243 

between the meat groups. 244 

 245 

3.2. Principal component analysis (PCA) 246 

PCA was utilized as an unsupervised data analysis method to reduce the dimensionality of 247 

the data, visualize sample relationships, and identify differences and groupings among the 248 

samples based on the volatile compounds (Pavlidis et al., 2019). The first PC1 explains 48.9%, 249 

and the PC2 explains 31.1% of the variation of the data, with a cumulative contribution of 80%, 250 

and reflects most of the information on the overall characteristics of the samples. Fig. 1 shows 251 

the PCA score plot, and it is demonstrated that all four groups were clearly distinguished where 252 

beef and pork are situated in the two terminals, and the mixed samples lie between them. 253 

Moreover, the positions of the samples reflect the percentage of the adulteration. For instance, 254 

mixed samples of (60:40) were more closely clustered near the pork compared to (80:20). Even 255 

though there was a little overlap between the pure beef and two mixed samples, pure pork was 256 

completely clustered separately. The possible reason may be the higher percentage of beef in 257 

the mixed samples and almost similar volatile compounds in both types of meat, which differ 258 

only in their relative concentration (Bleicher et al., 2022; Vilar et al., 2022). As the PCA was 259 

run unsupervised, the scatter plots displaying sample outputs primarily depicted their relative 260 

positioning to one another. These positions can predominantly be influenced by experimental 261 

fluctuations, such as system noise and instrumental drift (Zhang et al., 2020). The PLS-DA 262 

model was implemented to overcome these issues and further construct a better model for 263 

discrimination. 264 

 265 

3.3. Partial least squares-discriminant analysis (PLD-DA) 266 

PLS-DA is a versatile algorithm capable of both predictive and descriptive modeling, as 267 

well as characterizing differences between samples, serving as a valuable feature selector and 268 

classifier (Pranata et al., 2021). It facilitates linking metabolite information with different meat 269 



 

 

classes (Trivedi et al., 2016). Pure pork and beef samples were segregated on opposite sides of 270 

the PLS-DA score plot, with mixed samples positioned between them, leaning more towards 271 

the beef samples when the beef percentage was higher in the mixed sample. The PLS-DA score 272 

plot exhibited distinct clustering among pure beef, pork, and mixed samples, as depicted in Fig. 273 

2. 274 

Model validation was done with 1000 random permutations to identify the model’s 275 

prediction accuracy and to assess the reliability of the model, as sometimes the model can suffer 276 

from overfitting problems from the training dataset (Song et al., 2021). The p-value obtained 277 

from the permutation test was 0.001, which indicates the model's validity (Eriksson et al., 2008; 278 

Amalia et al., 2022). Moreover, cross-validation was conducted to evaluate the reproducibility 279 

and predictive capability of the model. The R2 (model fitness) and Q2 (predictive performance) 280 

values were determined to be 0.78 and 0.80, respectively, indicating a well-fitted model. The 281 

first three principal components account for approximately 76.3% of the dataset's variance, 282 

with the first component (PC1) explaining 60% of the dataset's variance and providing optimal 283 

groupings. PLS-DA analysis not only distinguishes between known categories and predicts 284 

unfamiliar samples but also establishes a connection between metabolite data and each specific 285 

category (Cubero-Leon et al., 2014; Pavlidies et al., 2019). 286 

 287 

3.4. Potential volatile markers 288 

To identify volatile compounds suitable as markers, correlation coefficients, and VIP 289 

(Variable Importance in Projection) values were extracted from the PLS-DA model (Amalia et 290 

al., 2022). Fig. 3 shows the top 15 compounds identified for each type of meat group with the 291 

highest VIP value. Compounds with a higher VIP score are important for the meat samples' 292 

discrimination (Li et al., 2021a; Pranata et al., 2021). The top 15 compounds were nonanal, 293 

benzaldehyde, pentadecanal, hexadecanal, hexanoic acid, 1-octanol, 2-nonenal (E), 1-octen-3-294 

ol, 2-ethyl-1-hexanol, octanal, hexanal, octanoic acid, 2-acetylpyrrole, 2-decenal (E) and 295 

heptanoic acid. The aldehyde, nonanal comes with the highest VIP value of 4.0 and is 296 

considered to have the highest influence in discriminating between the groups. Nonanal was 297 

present at a very high concentration in all the samples with the highest in beef. Previous studies 298 

also found nonanal contributes the highest to beef flavour (Ahamed et al., 2023; Vilar et al., 299 

2022). In a study by Wu (2022), nonanal was identified as a significant aroma compound in 300 

cooked pork, imparting a citrus and green-like aroma. Among the fifteen compounds identified, 301 

fourteen were derived from lipid degradation and categorized as aldehydes, alcohols, and acids. 302 



 

 

This observation aligns with findings from a review that summarized 332 compounds from 303 

various cooked meat species, highlighting the substantial contribution of lipid degradation 304 

compounds to the flavor of cooked meat (Sohail et al., 2022). In Fig. 3, the color legend on the 305 

right side, transitioning from blue to red, represents the increasing frequency values of the 306 

significant compounds in each category. 307 

For further confirmation of the most significant compounds for discrimination, a Random 308 

forest test was performed. Fig. 4 shows the 15 important volatiles that achieved higher 309 

significance in the random forest analysis than the other compounds. In beef, 1-octanol, 310 

benzaldehyde, hexanoic acid, nonanal, octanoic acid, 2-acetylpyrrole, heptanoic acid, 311 

hexadecanal, 2-ethylhexyl acrylate, octanal were the most important volatiles, in the pork, 312 

hexanal, 1-octen-3-ol, 2-pentyl furan, 1-dodecanol. Previous studies have identified 313 

benzaldehyde as a predominant and one of the most abundant aldehydes in grilled meat, and 314 

confirmed 2-acetylpyrrole as a highly predictive compound for beef, consistent with our 315 

findings (Wei et al., 2022). Nonanal, derived from the beta-oxidation of oleic acid, is a key 316 

compound in cooked beef and is positively correlated with cooked beef flavor (Li et al., 2021b; 317 

Wu et al., 2022). However, one research reported that nonanal was a strong marker and 318 

positively correlated with meatballs made of beef and wild boar mixture (Amalia et al., 2022). 319 

This may occur due to the different volatile profiles of wild boar. In one study, octanal and 1-320 

octanol were found to be positively correlated with beef (Pavlidis et al., 2019), and many 321 

previous studies observed this aldehyde and alcohol as a major volatile compound in cooked 322 

beef (Sohail et al., 2022). The hexanal and 1-octen-3-ol are the major contributing volatile 323 

compounds in cooked pork but sometimes produce undesirable odor at higher concentrations 324 

(Han et al., 2020; Li et al., 2022; Wu et al., 2022). The 2-pentyl furan is important in pork 325 

flavour and is derived from linoleic acid oxidation (Wang et al., 2016). Tetradecanal is found 326 

to be an important metabolite of the 60:40 mixed sample. From the PLS-DA and Random 327 

Forest test, 11 compounds were identified as common in both models and are pretended to be 328 

the important compounds for the discrimination between the samples. The common 329 

compounds were hexanal, nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, 1-octen-3-330 

ol, hexanoic acid, heptanoic acid, octanoic acid and 2- acetylpyrrole.  331 

Figure 5 displays a heatmap depicting compounds that significantly influence the 332 

discrimination process, determined through Pearson correlation. The color chart on the right 333 

side illustrates the correlation strength. Notably, the heatmap reveals clear differentiation 334 

between pork and beef samples. Moreover, the mixed sample containing 80% beef and 20% 335 



 

 

pork exhibits a closer resemblance to beef's volatile profile compared to the sample containing 336 

60% beef and 40% pork, evident from the discernible color variation. Some compounds 337 

showed a higher correlation with beef and followed a trend of lowering in the mixed sample. 338 

Benzeneacetaldehyde, octanal, octanoic acid, 2-ethyl-1-hexanol, 2-undecenal, 1-heptanol, 2-339 

ethylhexyl acrylate, 1-octanol, hexanoic acid, 2- decenal (E) are highly positively correlated 340 

with beef samples and in the sample of (80% beef and 20% pork) their concentration becomes 341 

a little lower than the pure beef, and again it becomes lower in (60% beef and 40% pork) 342 

samples. Nonanal, benzaldehyde, heptanoic acid, hexadecanal, 2-nonenal (E), heptanal, 2-343 

acetylpyrrole, and acetophenone also positively correlated with beef samples. Previous studies 344 

also found octanal, heptanal, nonanal, 1-hexanol, 1-octanol, and benzaldehyde were positively 345 

correlated with beef (Pavlidies et al.,2019). Hexanal, 1-octen-3-ol, 3-ethyl-2,5-dimethyl 346 

pyrazine, and 1-dodecanol were highly positively correlated with pork samples. Hexanal, one 347 

of the major volatile in pork, comes from the degradation of a major polyunsaturated fatty acid, 348 

found at a very high concentration and has a strong correlation with pork (Li et al., 2022; 349 

Pavlidis et al., 2019). 1-Octen-3-ol was also previously identified as a positively correlated 350 

biomarker for pork (Pavlidis et al., 2019; Shi et al., 2019; Vilar et al., 2022). However, one 351 

study indicates heptanal as a major discriminatory compound for pork which is different from 352 

our findings (Nurjuliana et al., 2011). Pentadecanal, tetradecanal, and 1-formylpyrrolidine 353 

showed a positive correlation with (60:40) mixed samples. Sometimes during the cooking of 354 

adulterated meat, compound-compound interaction can happen and some compound 355 

concentrations are increased greatly rather than presented in the pure sample (Pavlidis et al., 356 

2019). And, this effect may happen with the above-mentioned three compounds in the mixed 357 

sample (60:40 ratio). The heatmap showed that beef and pork have a different volatile profile, 358 

which may be due to their eating habit. Beef are mainly herbivores and pigs are omnivores 359 

(Sohail et al., 2022). Moreover, pigs possess a more complex digestive system, which can be 360 

evident in their ability to absorb carbon and nitrogen-containing compounds, a significant 361 

portion of which originate from microorganisms (Trivedi et al., 2016).  362 

Fig. 6 shows the correlation matrix of 38 compounds between the pure beef, pork, and 363 

mixed samples. Using the statistical module of Metaboanalyst, we identified groups of 364 

normalized metabolites that exhibit either positive or negative correlations, regardless of the 365 

specific samples they come from. Color-coding represents these correlations visually: positive 366 

correlations are shown in brown, while negative correlations are displayed in blue. The 367 

intensity of the colors corresponds to the strength of the correlation. A big cluster of positively 368 



 

 

correlated compounds accompanied by three minor ones was found. 2-nonenal, heptanal, 2-369 

decenal (E), 2-undecenal, nonanal, 1-octanol, decanal, octanal, 1-heptanol, dodecanal, 2,4-370 

decadienal (E,E) and 2-pentyl furan created the big cluster and had the highest positive 371 

correlation among them irrespective of their origin (meat type). Most of these positively 372 

correlated compounds also belong to the aldehydes, alcohols, and acids, which are compounds 373 

derived from lipid oxidation.  374 

 375 

 376 

4. Conclusions 377 

In conclusion, this study demonstrates the potential of HS-SPME-GC-MS as a reliable and 378 

efficient method for analyzing volatile compounds in cooked meat, enabling the classification 379 

of meat types and detection of adulteration. Both PCA and PLS-DA analyses revealed distinct 380 

separation among pure beef, pure pork, and mixed samples, with the position of adulterated 381 

samples influenced by the percentage of added pork. Some key compounds, including 382 

aldehydes, alcohols, and acids exhibited higher discriminatory power. This study underscores 383 

the potential of volatilomics-based techniques with chemometrics analysis in addressing meat 384 

and meat product adulteration and fraud labeling, though further research is essential to account 385 

for various factors affecting volatile compounds and establish a universal model and detecting 386 

at a very low level of adulteration. 387 
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Figure legends 502 

 503 

Figure 1. PCA score plot of the compound identified from cooked beef, pork, and mixed samples. 504 

  505 



 

 

 506 

Figure 2. PLS-DA score plot of the compound identified from cooked beef, pork, and mixed samples. 507 

  508 



 

 

 509 

Figure 3. Significant compounds screened by VIP (variable importance in projection) value. 510 
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 512 

Figure 4. Important compounds identified by Random forest test. 513 

  514 



 

 

 515 

Figure 5. Heatmap of the volatile compounds in response to each type of meat. 516 
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 518 

Figure 6. Correlation map of the compounds identified. 519 

 520 



 

 

 521 

Table 1. Volatile compounds identified in cooked beef, pork, and their admixture. 522 

Compound Name RT(min) Calculated 

LRI 

Referenced 

LRI 

(m/z) Beef 80%B +20%P 60%B 

+40%P 

Pork Identification 

method 

Aldehydes     Average concentration (µg/kg)  

Hexanal 5.44 1018 1036 56 89.19±9.19b 103.24±13.24ab 124.26±8.49ab 144.77±10.53a Lri, ms 
Heptanal 9.82 1154 1156 70 44.59±7.99a 41.24±6.88a 31.04±8.46a 11.66±2.64b Lri, ms 
Octanal 13.83 1273 1273 43 97.56±10.74a 76.47±7.78a 63.29±8.77ab 35.35±3.58b Lri, ms 
Nonanal 17.56 1384 1384 57 527.87±79.25a 464.87±68.83a 414.84±49.30a 176.44±16.40b Lri, ms 
Decanal 21.01 1491 1491 57 18.45±4.44a 15.38±3.70a 16.10±2.67a 11.64±2.27a Lri, ms 
Benzaldehyde 21.78 1514 1514 106 97.81±4.94a 88.33±4.21ab 78.58±4.53b 47.93±3.64c Lri, ms 
2-Nonenal (E) 22.11 1526 1526 55 43.77±6.13a 32.42±8.73a 24.32±4.00a 15.79±1.48a Lri, ms 
2-Decenal (E) 25.71 1640 1640 41 61.50±9.15a 48.18±7.11ab 40.66±8.29ab 20.69±4.22b Lri, ms 
2,4-Nonadienal (E,E) 27.42 1695 1695 81 15.29±0.94a 10.52±1.30b 4.08±0.10c n.d. Lri, ms 
2-Undecenal 28.64 1748 1750 57 62.64±7.87a 37.65±6.50a 32.46±6.84a 19.43±6.14a Lri, ms 
2,4-Decadienal (E,E) 29.9 1805 1805 81 16.94±4.02a 11.07±3.01a 10.02±1.17a 10.15±1.20a Lri, ms 
Tetradecanal 31.91 1919 1919 57 9.87±2.06a 10.39±1.88a 13.24±1.95a 12.68±1.76a Lri, ms 
Pentadecanal 33.53 2026 2024 82 18.80±2.36ab 21.61±2.52a 23.62±1.92a 12.93±2.04b Lri, ms 
Hexadecanal 34.98 2134 2135 57 31.18±2.82a 32.94±2.73a 29.44±2.53a 13.32±3.75b Lri, ms 
Dodecanal 27.67 1704 1704 57 23.35±2.10a 23.75±0.51a 13.24±2.49a 12.61±3.54a Lri, ms 
Benzeneacetaldehyde 25.81 1644 1635 91 18.85±1.30a 16.89±2.32a 16.42±1.80a 19.38±2.38a Lri, ms 
Alcohols          

1-octen-3-ol 19.54 1445 1445 57 38.96±6.37a 43.20±5.03a 46.46±1.76a 54.14±6.71a Lri, ms 
1-heptanol 19.67 1449 1449 56 55.33±8.79a 54.02±8.17a 39.69±4.96a n.d. Lri, ms 
2-ethyl-1-hexanol 20.80 1485 1485 57 77.22±8.92a 63.02±7.54ab 52.04±4.99bc 31.21±3.29c Lri, ms 
1-Octanol 22.91 1552 1552 56 78.15±8.88a 68.19±6.54a 56.86±6.69a 24.33±2.48b Lri, ms 
2-octen-1-ol(E) 24.88 1614 1613 57 13.80±2.40a 14.51±2.44a 14.79±0.25a n.d. Lri, ms 
1-Dodecanol 32.61 1965 1964 55 10.63±1.16a 13.87±2.44a 10.78±0.28a 14.68±1.40a Lri, ms 
2-phenyl-2-propanol 28.94 1761 1759 43 8.70±1.60a 8.06±1.50a 5.70±1.38a n.d. Lri, ms 
4-methyl phenol 34.42 2091 2094 60 2.37±0.80a 2.99±0.07a 3.29±0.49a 6.34±1.69a Lri, ms 
Pyrazines          

3-ethyl-2,5-dimethyl 

pyrazine 

19.13 1432 1433 135 18.57±2.05b 19.29±2.04ab 19.64±1.90ab 24.78±1.94a Lri, ms 



 

 

2,5-dimethyl pyrazine 14.9 1304 1306 108 8.14±0.67a 7.69±0.73a 7.17±0.64a 7.54±0.78a Lri, ms 
2-ethyl-5-methyl pyrazine 17.35 1378 1378 121 6.57±1.56ab 3.93±0.38b 4.12±0.72b 7.56±0.79a Lri, ms 
2-Acetylpyrrole 32.82 1977 1977 94 12.78±0.47a 12.65±0.51a 11.48±0.42a 8.92±0.84b Lri, ms 
Trimethyl pyrazine 17.71 1388 1388 122 62.52±6.32a n.d. n.d. 33.61±4.82b Lri, ms 
2-methyl 5H-6,7-

dihydrocyclopentapyrazine 

27.59 1701 1703 134 12.28±2.64a 5.61±1.09b 4.09±1.23b 5.42±1.56b Lri, ms 

Acids          

Hexanoic acid 30.73 1852 1862 60 68.24±10.32a 56.69±7.56a 50.55±9.12a 33.62±6.46b Lri, ms 
Heptanoic acid 32.50 1958 1950 60 15.47±2.67a 12.54±1.93a 12.04±2.40a 11.77±1.02a Lri, ms 
Octanoic acid 34.04 2063 2063 60 78.04±9.56a 57.59±7.95ab 49.59±4.32b 23.03±2.18c Lri, ms 
Nonanoic acid 35.43 2171 2171 60 65.75±8.91a 47.12±4.37b 41.40±2.17b 32.67±3.21b Lri, ms 
Decanoic acid 36.72 2277 2287 60 22.07±7.98b 58.32±8.56a 44.94±6.01a 20.56±3.09b Lri, ms 
Hydrocarbons          

2-pentyl furan 11.70 1210 1210 81 16.47±5.60a 16.50±3.87a 15.78±2.13a 15.61±2.20a Lri, ms 
1,3-Di-tert-butylbenzene 18.69 1418 1420 175 21.88±3.11a 16.09±4.88a 15.80±3.06a 15.86±1.54a Lri, ms 
Dodecane 10.58 1177  57 25.48±0.40a 18.02±1.94b 12.72±1.13bc 9.14±1.56c Lri, ms, std 
Tridecane 14.41 1290 1300 57 5.07±0.89a 1.85±0.32b 4.52±1.19a 3.25±1.02a Lri, ms, std 
Tetradecane 17.91 1394 1400 57 33.71±3.78a 30.93±4.32a 27.37±5.19a 13.11±2.54b Lri, ms, std 
Pentadecane 21.22 1498 1500 57 10.77±1.76a 4.97±1.07b 7.40±2.31b 6.44±1.45b Lri, ms, std 
Heptadecane 27.53 1699 1700 67 11.72±2.81a n.d. 15.65±3.42a 12.95±3.76a Lri, ms, std 
Azulene 28.32 1733 1736 128 15.03±2.84a n.d. n.d. n.d. Lri, ms 
Miscellaneous           

1-Formylpyrrolidine 15.27 1315 - 43 23.31±4.61b 17.12±3.08b 19.39±2.89b 36.14±5.60a ms 
2-Ethylhexyl acrylate 20.57 1480 1494 139 16.47±2.38a 15.21±3.14a 15.13±1.60a 19.37±4.25a Lri, ms 

 523 

Identification method: LRI, linear retention index compared with previous literature, PubChem, and NIST Chemistry WebBook; ms, mass spectrum, and 524 
mass quality comparison using NIST libraries; std, same retention time with the standard compound. m/z: target ion used for quantification. 525 

a-cMeans with a different letter within a row are significantly different (p<0.05, Duncan test). Data are presented as mean ± SE. 526 

 527 
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